Step 1: Observe the integrand:
\[
e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right)
\]
Step 2: Note that the derivative of \( \sin^{-1} x \) is:
\[
\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}
\]
Step 3: Recognize the integrand as:
\[
e^x \sin^{-1} x + e^x \frac{d}{dx}(\sin^{-1} x)
\]
Step 4: This suggests the integrand is the derivative of the product \( e^x \sin^{-1} x \) by the product rule:
\[
\frac{d}{dx} \left( e^x \sin^{-1} x \right) = e^x \sin^{-1} x + e^x \frac{1}{\sqrt{1 - x^2}}
\]
Step 5: Therefore,
\[
\int e^x \left( \sin^{-1} x + \frac{1}{\sqrt{1 - x^2}} \right) dx = e^x \sin^{-1} x + c
\]
Final Answer: \( \boxed{e^x \sin^{-1} x + c} \)