Question:

Evaluate: \[ \cosh^{-1} 2 \]

Show Hint

For \( \cosh^{-1} x \), use \( \cosh^{-1} x = \log (x + \sqrt{x^2 - 1}) \).
Updated On: Mar 19, 2025
  • \( \log(2 + \sqrt{3}) \)
  • \( \log(2 + \sqrt{5}) \)
  • \( \log(2 - \sqrt{5}) \)
  • \( \log(2 + \sqrt{2}) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The formula for inverse hyperbolic cosine is: \[ \cosh^{-1} x = \log \left( x + \sqrt{x^2 - 1} \right) \] Substituting \( x = 2 \): \[ \cosh^{-1} 2 = \log \left( 2 + \sqrt{2^2 - 1} \right) \] \[ = \log (2 + \sqrt{4 - 1}) = \log (2 + \sqrt{3}) \] Thus, the correct answer is \( \log(2 + \sqrt{3}) \).
Was this answer helpful?
0
0