Concept:
The general equation of a plane electromagnetic wave is:
\[
E = E_0 \sin(\omega t - kx)
\]
where:
\(\omega\) is the angular frequency,
\(k\) is the wave number,
Wave speed \(v = \dfrac{\omega}{k}\),
Refractive index \(n = \dfrac{c}{v}\).
Step 1: Compare the given equation with the standard form.
Given:
\[
E = 2\sin\left(2\times 10^{15}t - 10^{7}x\right)
\]
Hence,
\[
\omega = 2\times 10^{15}\ \text{rad s}^{-1}, \quad
k = 10^{7}\ \text{m}^{-1}
\]
Step 2: Calculate the velocity of the wave in the medium.
\[
v = \frac{\omega}{k} = \frac{2\times 10^{15}}{10^{7}}
= 2\times 10^{8}\ \text{m s}^{-1}
\]
Step 3: Calculate the refractive index.
Speed of light in vacuum:
\[
c = 3\times 10^{8}\ \text{m s}^{-1}
\]
\[
n = \frac{c}{v} = \frac{3\times 10^{8}}{2\times 10^{8}} = \frac{3}{2}
\]
Conclusion:
\[
\boxed{n = \dfrac{3}{2}}
\]
Hence, the correct answer is (1).