The correct option is(B): \(\frac{8}{9}\).
Let .v grams of each hydrogen and methane are mixed
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, Moles\, of\, H_2=\frac{x}{2}\)
\(\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, Moles\, of\, CH_4=\frac{x}{16}\)
\(\Rightarrow \, \, \, \, \, \, Mole fraction of H_2 =\frac{\frac{x}{2}}{\frac{x}{2}+\frac{x}{16}}=\frac{8}{9}\)
\(\Rightarrow \, \, \, \, \frac{Partial\, pressure\, of\, H_2}{Total\, pressure }=Mole\, fraction\, of\, H_2=\frac{8}{9}\)
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?
The matter is made up of very tiny particles and these particles are so small that we cannot see them with naked eyes.
The three states of matter are as follows: