- Step 1: Find the thermal energy at 27°C.
The average thermal energy of a particle is given by \( E \sim kT \), where \( k \) is the Boltzmann constant and \( T \) is the temperature in Kelvin.
- Temperature in Kelvin is:
\[
T = 27 + 273 = 300 \, \text{K}.
\]
The Boltzmann constant \( k = 1.38 \times 10^{-23} \, \text{J/K} \), so the energy of the particle is:
\[
E = kT = (1.38 \times 10^{-23}) \times 300 = 4.14 \times 10^{-21} \, \text{J}.
\]
- Step 2: Calculate the de Broglie wavelength of a neutron.
The wavelength of the neutron is given by de Broglie's relation:
\[
\lambda = \frac{h}{p},
\]
where \( p = mv \) is the momentum and \( h \) is Planck's constant. The kinetic energy of the thermal neutron is \( E = \frac{1}{2} m v^2 \), so the velocity is:
\[
v = \sqrt{\frac{2E}{m}}.
\]
Thus, the wavelength is:
\[
\lambda = \frac{h}{\sqrt{2mE}}.
\]
Substituting the values of \( h = 6.626 \times 10^{-34} \, \text{J.s} \), and the mass of a neutron \( m \approx 1.675 \times 10^{-27} \, \text{kg} \):
\[
\lambda = \frac{6.626 \times 10^{-34}}{\sqrt{2 \times 1.675 \times 10^{-27} \times 4.14 \times 10^{-21}}} \approx 1.56 \times 10^{-10} \, \text{m} = 0.156 \, \text{nm}.
\]
- Step 3: Energy of a photon having the same wavelength.
The energy of a photon \( E_{\text{photon}} \) is related to the wavelength \( \lambda \) by:
\[
E_{\text{photon}} = \frac{h c}{\lambda},
\]
where \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light. Substituting the values:
\[
E_{\text{photon}} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{0.156 \times 10^{-9}} \approx 1.27 \times 10^{-16} \, \text{J}.
\]