Let molar mass of A = \( M_A \), B = \( M_B \)
From data:
- A is FCC: 4 atoms/unit cell
- B is BCC: 2 atoms/unit cell
- \( a = 3 \, \text{Å} = 3 \times 10^{-8} \, \text{cm} \)
- Densities: \( \rho = \frac{Z \cdot M}{N_A \cdot a^3} \)
Given:
- Number of atoms in 210 g of A = in 594 g of B
So:
\[
\frac{210}{M_A} \cdot N_A = \frac{594}{M_B} \cdot N_A
\Rightarrow \frac{210}{M_A} = \frac{594}{M_B}
\Rightarrow \frac{M_B}{M_A} = \frac{594}{210} = 2.83
\]
Now, use density formula:
\[
\rho_A = \frac{4 M_A}{N_A \cdot a^3} = 7
\Rightarrow M_A = \frac{7 \cdot N_A \cdot a^3}{4}
\]
Use it in:
\[
\rho_B = \frac{2 M_B}{N_A \cdot a^3}
= \frac{2 \cdot 2.83 \cdot M_A}{N_A \cdot a^3}
= 2.83 \cdot \frac{2 M_A}{N_A \cdot a^3}
= 2.83 \cdot \frac{2}{4} \cdot 7 = 2.83 \cdot 3.5 = 9.9 \, \text{g/cm}^3
\]