Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \( E^\circ_{Fe^{2+}/Fe} = -0.441 \, \text{V} \) and \( E^\circ_{Fe^{3+}/Fe^{2+}} = 0.771 \, \text{V} \),
the standard emf of the cell reaction \( Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq) \) is:
\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] For the reaction, \( Fe^{3+} \) is reduced to \( Fe^{2+} \) (reduction at the cathode), and \( Fe \) is oxidized to \( Fe^{2+} \) (oxidation at the anode). So: \[ E^\circ_{\text{cell}} = E^\circ_{Fe^{3+}/Fe^{2+}} - E^\circ_{Fe^{2+}/Fe} \] \[ E^\circ_{\text{cell}} = 0.771 \, \text{V} - (-0.441 \, \text{V}) = 0.771 + 0.441 = 1.212 \, \text{V} \] Hence, the standard emf of the cell reaction is \( 1.212 \, \text{V} \).
Consider the following
Statement-I: Kolbe's electrolysis of sodium propionate gives n-hexane as product.
Statement-II: In Kolbe's process, CO$_2$ is liberated at anode and H$_2$ is liberated at cathode.
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: