Step 1: Understanding the Concept:
RMS (Root Mean Square) current is calculated by taking the square of the current, finding its average over a period, and then taking the square root. Step 2: Key Formula or Approach:
\[ I_{rms} = \sqrt{\frac{1}{T} \int_0^T i^2 dt} \] Step 3: Detailed Explanation:
Substitute \(i = \frac{i_0}{T} t\) into the formula:
\[ I_{rms}^2 = \frac{1}{T} \int_0^T \left( \frac{i_0 t}{T} \right)^2 dt = \frac{i_0^2}{T^3} \int_0^T t^2 dt \]
\[ I_{rms}^2 = \frac{i_0^2}{T^3} \left[ \frac{t^3}{3} \right]_0^T = \frac{i_0^2}{T^3} \left( \frac{T^3}{3} \right) = \frac{i_0^2}{3} \]
Taking the square root:
\[ I_{rms} = \frac{i_0}{\sqrt{3}} \] Step 4: Final Answer:
The RMS current for the period \(t = 0\) to \(t = T\) is \(\frac{i_0}{\sqrt{3}}\).