Concept:
In an \(RL\) circuit connected to a DC source:
Maximum (steady-state) current:
\[
I_0 = \frac{\varepsilon}{R}
\]
Current growth with time:
\[
I(t) = I_0\left(1 - e^{-t/\tau}\right), \quad \tau = \frac{L}{R}
\]
Magnetic energy density in an inductor:
\[
u = \frac{B^2}{2\mu_0}
\]
Magnetic field inside a solenoid:
\[
B = \mu_0 \frac{N}{\ell} I
\]
Step 1: Find maximum current.
\[
I_0 = \frac{\varepsilon}{R} = \frac{10}{10} = 1\,\text{A}
\]
Given condition:
\[
I = \frac{I_0}{e} = \frac{1}{e}\,\text{A}
\]
Step 2: Find magnetic field at this instant.
\[
B = \mu_0 \frac{N}{\ell} I
= (4\pi \times 10^{-7}) \times 10000 \times \frac{1}{e}
\]
\[
B = \frac{4\pi \times 10^{-3}}{e}
\]
Step 3: Write expression for energy density.
\[
u = \frac{B^2}{2\mu_0}
= \frac{1}{2\mu_0}\left(\frac{4\pi \times 10^{-3}}{e}\right)^2
\]
\[
u = \frac{16\pi^2 \times 10^{-6}}{2\mu_0 e^2}
\]
Substitute \( \mu_0 = 4\pi \times 10^{-7} \):
\[
u = \frac{16\pi^2 \times 10^{-6}}{2(4\pi \times 10^{-7})e^2}
\]
\[
u = \frac{16\pi^2}{8\pi}\frac{10}{e^2}
\]
\[
u = \frac{20\pi}{e^2}
\]
Step 4: Compare with given form.
Given:
\[
u = \alpha \frac{\pi}{e^2}
\]
Thus,
\[
\alpha = 20
\]
\[
\boxed{\alpha = 20}
\]