Electric charge is transferred to an irregular metallic disk as shown in the figure. If $ \sigma_1 $, $ \sigma_2 $, $ \sigma_3 $, and $ \sigma_4 $ are charge densities at given points, then choose the correct answer from the options given below: 
To solve this problem, we need to use the concept of surface charge density on a conductor. The key principle here is that charge tends to accumulate on parts of a conductive surface that are more curved, i.e., where the radius of curvature is smaller. This means sharper points on a conductor will have higher charge density.
Consider the points on the irregular metallic disk:
Based on these observations:
Therefore, comparing the options:
The correct answer is: A, B, and C Only.
In this problem, we are dealing with charge distribution on an irregular metallic disk.
The charge density on the surface of a conductor is not uniform and depends on the geometry of the conductor and the position on the conductor.
For a metallic disk:
- The charge densities at the edge are generally higher due to the fact that charges tend to accumulate at points of sharp curvature, such as the corners of the disk.
- The charge densities at the flat portions of the disk, away from the edges, are generally lower.
Looking at the figure:
- \( \sigma_1 \), being near the top edge of the disk, would have a higher charge density than \( \sigma_3 \), which is closer to the center.
- \( \sigma_2 \), being near the edge, would also have a higher charge density than \( \sigma_4 \), which is farther away from the edge.
Thus: - \( \sigma_1>\sigma_3 \)
- \( \sigma_2 = \sigma_4 \) (due to symmetry of the disk)
Therefore, the correct options are A, B, and C, meaning \( \sigma_1>\sigma_3 \), and \( \sigma_2 = \sigma_4 \).



Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
An organic compound (X) with molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ is not readily oxidised. On reduction it gives $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}(\mathrm{Y})\right.$ which reacts with HBr to give a bromide (Z) which is converted to Grignard reagent. This Grignard reagent on reaction with (X) followed by hydrolysis give 2,3-dimethylbutan-2-ol. Compounds (X), (Y) and (Z) respectively are: