Let:
Given:
Number of students studying H: \[ H = h + x + 20 + 10 \] Number of students studying E: \[ E = e + y + 20 + 10 \] Given \( H = E \), we have: \[ h + x = e + y \]
Total students: \[ h + x + 20 + 10 + e + y = 74 \] Substitute \( h + x = e + y \): \[ (h + x) + (e + y) + 30 = 74 \] \[ (h + x) + (h + x) = 44 \] \[ 2(h + x) = 44 \] \[ h + x = 22 \]
\[ H = (h + x) + 20 + 10 = 22 + 20 + 10 = 52 \]
✅ Final Answer: The number of students studying H = 52
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: