This is a binomial probability problem.
Let \(n\) be the number of days in a week, so \(n=7\).
Let \(p\) be the probability of a day having severe fog, \(p = 0.6 = 6/10 = 3/5\).
Let \(q\) be the probability of a day NOT having severe fog, \(q = 1-p = 1 - 0.6 = 0.4 = 4/10 = 2/5\).
We want to find the probability of having exactly \(k=2\) days with severe fog in a week.
The binomial probability formula is \(P(X=k) = \binom{n}{k} p^k q^{n-k}\).
Here, \(n=7, k=2, p=3/5, q=2/5\).
\(P(X=2) = \binom{7}{2} (3/5)^2 (2/5)^{7-2}\)
\(P(X=2) = \binom{7}{2} (3/5)^2 (2/5)^5\)
Calculate \(\binom{7}{2} = \frac{7 \times 6}{2 \times 1} = 21\).
\((3/5)^2 = 9/25\).
\((2/5)^5 = 2^5 / 5^5 = 32 / 3125\).
So, \(P(X=2) = 21 \times \frac{9}{25} \times \frac{32}{3125}\).
The denominator is \(25 \times 3125 = 5^2 \times 5^5 = 5^7\).
\(5^7 = 5^2 \cdot 5^5 = 25 \cdot 3125\).
\(25 \times 3125 = 25 \times (3000 + 100 + 25) = 75000 + 2500 + 625 = 77500 + 625 = 78125\).
Numerator = \(21 \times 9 \times 32\).
\(21 \times 9 = 189\).
\(189 \times 32\):
189
x 32
-----
378 (189 * 2)
5670 (189 * 30)
-----
6048
So, \(P(X=2) = \frac{6048}{5^7} = \frac{6048}{78125}\).
This matches option (a).
\[ \boxed{\frac{6048}{5^7}} \]