For an adiabatic process, the relation between pressure (\( P \)) and temperature (\( T \)) can be derived using the adiabatic condition and the ideal gas law. The adiabatic condition for an ideal gas is:
\[
P V^\gamma = \text{constant}
\]
For a monatomic gas, the adiabatic index \( \gamma = \frac{C_P}{C_V} = \frac{5}{3} \) (since \( C_V = \frac{3}{2}R \), \( C_P = C_V + R = \frac{5}{2}R \)).
Using the ideal gas law \( P V = n R T \), we can express the volume as:
\[
V = \frac{n R T}{P}
\]
Substitute \( V \) into the adiabatic condition:
\[
P \left( \frac{n R T}{P} \right)^\gamma = \text{constant}
\]
\[
P \cdot \frac{(n R T)^\gamma}{P^\gamma} = \text{constant} \quad \Rightarrow \quad P^{1-\gamma} T^\gamma = \text{constant}
\]
\[
P^{1-\gamma} = \text{constant} \cdot T^{-\gamma} \quad \Rightarrow \quad P = \text{constant} \cdot T^{\frac{\gamma}{\gamma-1}}
\]
Given \( P \propto T^X \), the exponent \( X = \frac{\gamma}{\gamma-1} \). Substitute \( \gamma = \frac{5}{3} \):
\[
\gamma - 1 = \frac{5}{3} - 1 = \frac{2}{3}, \quad X = \frac{\frac{5}{3}}{\frac{2}{3}} = \frac{5}{3} \times \frac{3}{2} = \frac{5}{2}
\]
So, the value of \( X \) is \( \frac{5}{2} \).