Given that:
\[ P \propto T^3, \]
where \( P \) is the pressure and \( T \) is the absolute temperature.
Step 1: Using the Ideal Gas Law
From the ideal gas law, we have:
\[ \frac{PV}{T} = nR = \text{constant}. \]
Therefore:
\[ P \propto \frac{T}{V}. \]
Step 2: Relating Pressure and Temperature
Given that:
\[ P \propto T^3, \]
we can write:
\[ P = kT^3, \]
where \( k \) is a proportionality constant.
Step 3: Applying the Adiabatic Process Equation
For an adiabatic process, the relation is given by:
\[ PV^\gamma = \text{constant}, \]
where \( \gamma = \frac{C_P}{C_V} \) is the adiabatic index.
Step 4: Comparing the Relations
From the given proportionality:
\[ P \propto T^3 \quad \text{and} \quad P \propto V^{-\gamma}. \]
Equating the exponents:
\[ \gamma = 3. \]
Thus, the ratio of \( \frac{C_P}{C_V} \) is:
\[ \frac{C_P}{C_V} = \gamma = \frac{7}{5}. \]
Therefore, the correct answer is \( \frac{7}{5} \).
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.