Given that:
\[ P \propto T^3, \]
where \( P \) is the pressure and \( T \) is the absolute temperature.
Step 1: Using the Ideal Gas Law
From the ideal gas law, we have:
\[ \frac{PV}{T} = nR = \text{constant}. \]
Therefore:
\[ P \propto \frac{T}{V}. \]
Step 2: Relating Pressure and Temperature
Given that:
\[ P \propto T^3, \]
we can write:
\[ P = kT^3, \]
where \( k \) is a proportionality constant.
Step 3: Applying the Adiabatic Process Equation
For an adiabatic process, the relation is given by:
\[ PV^\gamma = \text{constant}, \]
where \( \gamma = \frac{C_P}{C_V} \) is the adiabatic index.
Step 4: Comparing the Relations
From the given proportionality:
\[ P \propto T^3 \quad \text{and} \quad P \propto V^{-\gamma}. \]
Equating the exponents:
\[ \gamma = 3. \]
Thus, the ratio of \( \frac{C_P}{C_V} \) is:
\[ \frac{C_P}{C_V} = \gamma = \frac{7}{5}. \]
Therefore, the correct answer is \( \frac{7}{5} \).
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).