Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
There are distinct applications of integrals, out of which some are as follows:
In Maths
Integrals are used to find:
In Physics
Integrals are used to find: