Step 1: Understanding the Question:
We need to evaluate a definite integral over a symmetric interval \([-\pi/6, \pi/6]\). The integrand has a complicated form, which suggests using properties of definite integrals, such as even and odd functions.
Step 2: Key Formula or Approach:
1. Splitting the integral: \(\int (f(x)+g(x)) dx = \int f(x) dx + \int g(x) dx\).
2. Even/Odd function property: For a symmetric interval \([-a, a]\):
- If \(f(x)\) is an odd function (\(f(-x) = -f(x)\)), then \(\int_{-a}^{a} f(x) dx = 0\).
- If \(f(x)\) is an even function (\(f(-x) = f(x)\)), then \(\int_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx\).
3. Trigonometric identity: \(1 - \sin(\theta) = 1 - \cos(\pi/2 - \theta) = 2\sin^2(\frac{\pi/2-\theta}{2}) = 2\sin^2(\pi/4-\theta/2)\).
4. Standard integral: \(\int \csc^2(u) du = -\cot(u) + C\).
Step 3: Detailed Explanation:
Let the given integral be \(I\). We can split it into two parts:
\[ I = \int_{-\pi/6}^{\pi/6} \frac{\pi}{1-\sin(|x|+\pi/6)} dx + \int_{-\pi/6}^{\pi/6} \frac{4x^{11}}{1-\sin(|x|+\pi/6)} dx = I_1 + I_2 \]
Let's analyze \(I_2\). The integrand is \(f(x) = \frac{4x^{11}}{1-\sin(|x|+\pi/6)}\).
Let's check if it's even or odd: \(f(-x) = \frac{4(-x)^{11}}{1-\sin(|-x|+\pi/6)} = \frac{-4x^{11}}{1-\sin(|x|+\pi/6)} = -f(x)\).
Since the integrand is an odd function and the interval is symmetric, \(I_2 = 0\).
Now let's evaluate \(I_1\). The integrand is \(g(x) = \frac{\pi}{1-\sin(|x|+\pi/6)}\).
Let's check if it's even or odd: \(g(-x) = \frac{\pi}{1-\sin(|-x|+\pi/6)} = \frac{\pi}{1-\sin(|x|+\pi/6)} = g(x)\).
Since the integrand is an even function, we can write:
\[ I = I_1 = 2 \int_{0}^{\pi/6} \frac{\pi}{1-\sin(|x|+\pi/6)} dx \]
For \(x \in [0, \pi/6]\), \(|x| = x\). So,
\[ I = 2\pi \int_{0}^{\pi/6} \frac{1}{1-\sin(x+\pi/6)} dx \]
Let \(u = x + \pi/6\), so \(du = dx\). The limits of integration change:
When \(x=0\), \(u = \pi/6\).
When \(x=\pi/6\), \(u = \pi/3\).
\[ I = 2\pi \int_{\pi/6}^{\pi/3} \frac{1}{1-\sin(u)} du \]
Using the identity \(1-\sin(u) = 2\sin^2(\pi/4 - u/2)\):
\[ I = 2\pi \int_{\pi/6}^{\pi/3} \frac{1}{2\sin^2(\pi/4 - u/2)} du = \pi \int_{\pi/6}^{\pi/3} \csc^2(\pi/4 - u/2) du \]
Now we integrate:
\[ \int \csc^2(\pi/4 - u/2) du = \frac{-\cot(\pi/4 - u/2)}{-1/2} = 2\cot(\pi/4 - u/2) \]
Applying the limits:
\[ I = \pi \left[ 2\cot(\pi/4 - u/2) \right]_{\pi/6}^{\pi/3} \]
\[ I = 2\pi \left[ \cot(\pi/4 - (\pi/3)/2) - \cot(\pi/4 - (\pi/6)/2) \right] \]
\[ I = 2\pi \left[ \cot(\pi/4 - \pi/6) - \cot(\pi/4 - \pi/12) \right] \]
\[ I = 2\pi \left[ \cot(\pi/12) - \cot(\pi/6) \right] \]
We know \(\cot(\pi/6) = \sqrt{3}\) and \(\cot(\pi/12) = \cot(15^\circ) = 2+\sqrt{3}\).
\[ I = 2\pi \left[ (2+\sqrt{3}) - \sqrt{3} \right] = 2\pi(2) = 4\pi \]
Step 4: Final Answer:
The value of the integral is \(4\pi\).