For the first term:
\[ y_1 = (\tan x)^{\cot x}. \]
Taking the logarithm:
\[ \ln y_1 = \cot x \ln(\tan x). \]
Differentiating:
\[ \frac{1}{y_1} \frac{dy_1}{dx} = -\csc^2 x \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x}. \]
Thus:
\[ \frac{dy_1}{dx} = (\tan x)^{\cot x} \left(-\csc^2 x \ln(\tan x) + \frac{\cot x \sec^2 x}{\tan x} \right). \]
For the second term:
\[ y_2 = (\sin x)^{\cos x}. \]
Taking the logarithm:
\[ \ln y_2 = \cos x \ln(\sin x). \]
Differentiating:
\[ \frac{1}{y_2} \frac{dy_2}{dx} = -\sin x \ln(\sin x) + \cos x \cot x. \]
Thus:
\[ \frac{dy_2}{dx} = (\sin x)^{\cos x} \left(-\ln(\sin x) \sin x + \cos x \cot x \right). \]
Finally:
\[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx}. \]
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: