For the first term:
\[ y_1 = (\tan x)^{\cot x}. \]
Taking the logarithm:
\[ \ln y_1 = \cot x \ln(\tan x). \]
Differentiating:
\[ \frac{1}{y_1} \frac{dy_1}{dx} = -\csc^2 x \ln(\tan x) + \cot x \cdot \frac{\sec^2 x}{\tan x}. \]
Thus:
\[ \frac{dy_1}{dx} = (\tan x)^{\cot x} \left(-\csc^2 x \ln(\tan x) + \frac{\cot x \sec^2 x}{\tan x} \right). \]
For the second term:
\[ y_2 = (\sin x)^{\cos x}. \]
Taking the logarithm:
\[ \ln y_2 = \cos x \ln(\sin x). \]
Differentiating:
\[ \frac{1}{y_2} \frac{dy_2}{dx} = -\sin x \ln(\sin x) + \cos x \cot x. \]
Thus:
\[ \frac{dy_2}{dx} = (\sin x)^{\cos x} \left(-\ln(\sin x) \sin x + \cos x \cot x \right). \]
Finally:
\[ \frac{dy}{dx} = \frac{dy_1}{dx} + \frac{dy_2}{dx}. \]
The area of a parallelogram whose diagonals are given by $ \vec{u} + \vec{v} $ and $ \vec{v} + \vec{w} $, where:
$ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} $ is:
The direction ratios of the normal to the plane passing through the points
$ (1, 2, -3), \quad (1, -2, 1) \quad \text{and parallel to the line} \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} \text{ is:} $
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $