Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I | List-II |
---|---|
(A) \( f(x) = |x| \) | (I) Not differentiable at \( x = -2 \) only |
(B) \( f(x) = |x + 2| \) | (II) Not differentiable at \( x = 0 \) only |
(C) \( f(x) = |x^2 - 4| \) | (III) Not differentiable at \( x = 2 \) only |
(D) \( f(x) = |x - 2| \) | (IV) Not differentiable at \( x = 2, -2 \) only |
Choose the correct answer from the options given below:
The inverses of exponential functions are the logarithmic functions. The exponential function is y = ax and its inverse is x = ay. The logarithmic function y = logax is derived as the equivalent to the exponential equation x = ay. y = logax only under the following conditions: x = ay, (where, a > 0, and a≠1). In totality, it is called the logarithmic function with base a.
The domain of a logarithmic function is real numbers greater than 0, and the range is real numbers. The graph of y = logax is symmetrical to the graph of y = ax w.r.t. the line y = x. This relationship is true for any of the exponential functions and their inverse.
Exponential functions have the formation as:
f(x)=bx
where,
b = the base
x = the exponent (or power)