Diagonal AC of a parallelogram ABCD bisects ∠ A (see Fig. 8.11). Show that
(i) it bisects ∠C also,
(ii) ABCD is a rhombus.
(i) ABCD is a parallelogram.
∠DAC = ∠BCA (Alternate interior angles) ... (1)
And, ∠BAC = ∠DCA (Alternate interior angles) ... (2)
However, it is given that AC bisects A.
∠DAC = ∠BAC ... (3)
From equations (1), (2), and (3), we obtain
∠DAC = ∠BCA =∠ BAC = ∠DCA ... (4)
∠DCA = ∠BCA
Hence, AC bisects ∠ C.
(ii)From equation (4), we obtain
∠DAC =∠DCA
∠DA = DC (Side opposite to equal angles are equal)
However, DA = BC and AB = CD (Opposite sides of a parallelogram)
∠AB = BC = CD = DA
Hence, ABCD is a rhombus.
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:
(i) ∆APD ≅ ∆CQB
(ii) AP = CQ
(iii) ∆AQB ≅∆CPD
(iv) AQ = CP
(v) APCQ is a parallelogram
Use these adverbs to fill in the blanks in the sentences below.
awfully sorrowfully completely loftily carefully differently quickly nonchalantly
(i) The report must be read ________ so that performance can be improved.
(ii) At the interview, Sameer answered our questions _________, shrugging his shoulders.
(iii) We all behave _________ when we are tired or hungry.
(iv) The teacher shook her head ________ when Ravi lied to her.
(v) I ________ forgot about it.
(vi) When I complimented Revathi on her success, she just smiled ________ and turned away.
(vii) The President of the Company is ________ busy and will not be able to meet you.
(viii) I finished my work ________ so that I could go out to play