Diagonal AC of a parallelogram ABCD bisects ∠ A (see Fig. 8.11). Show that
(i) it bisects ∠C also,
(ii) ABCD is a rhombus.
(i) ABCD is a parallelogram.
∠DAC = ∠BCA (Alternate interior angles) ... (1)
And, ∠BAC = ∠DCA (Alternate interior angles) ... (2)
However, it is given that AC bisects A.
∠DAC = ∠BAC ... (3)
From equations (1), (2), and (3), we obtain
∠DAC = ∠BCA =∠ BAC = ∠DCA ... (4)
∠DCA = ∠BCA
Hence, AC bisects ∠ C.
(ii)From equation (4), we obtain
∠DAC =∠DCA
∠DA = DC (Side opposite to equal angles are equal)
However, DA = BC and AB = CD (Opposite sides of a parallelogram)
∠AB = BC = CD = DA
Hence, ABCD is a rhombus.
In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:
(i) ∆APD ≅ ∆CQB
(ii) AP = CQ
(iii) ∆AQB ≅∆CPD
(iv) AQ = CP
(v) APCQ is a parallelogram
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?