In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.12). Show that:
(i) ∆APD ≅ ∆CQB
(ii) AP = CQ
(iii) ∆AQB ≅∆CPD
(iv) AQ = CP
(v) APCQ is a parallelogram
(i) In ∆APD and ∆CQB,
∠ADP = ∠CBQ (Alternate interior angles for BC || AD)
AD = CB (Opposite sides of parallelogram ABCD)
DP = BQ (Given)
∠∆APD ∠∆CQB (Using SAS congruence rule)
(ii) As we had observed that ∆APD ∆CQB,
∠AP = CQ (CPCT)
(iii) In ∆AQB and ∆CPD,
∠ABQ = ∠CDP (Alternate interior angles for AB || CD)
AB = CD (Opposite sides of parallelogram ABCD)
BQ = DP (Given)
∠∆AQB ∠∆CPD (Using SAS congruence rule)
(iv) As we had observed that ∆AQB ∆CPD,
∠AQ = CP (CPCT)
(v) From the result obtained in (ii) and (iv),
AQ = CP and AP = CQ
Since
opposite sides in quadrilateral APCQ are equal to each other,
APCQ is a parallelogram.
ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ABC ≅ ∠∆BAD
(iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?