We are convolving a rectangular pulse with a unit step function.
Step 1: Understand signals:
\( u(t) - u(t - 2) \): rectangular pulse of width 2 from \( t = 0 \) to \( t = 2 \)
\( u(t) \): unit step function
Step 2: Convolution of pulse with step:
Convolution integral:
\[
y(t) = \int_{-\infty}^{\infty} [u(\tau) - u(\tau - 2)] \cdot u(t - \tau) \, d\tau
\]
This results in:
\[
y(t) =
\begin{cases}
0, & t < 0 \\
t, & 0 \leq t < 2 \\
2, & t \geq 2
\end{cases}
\]
Convert to unit step form:
\[
y(t) = t \cdot u(t) + (2 - t) \cdot u(t - 2)
\]