Let the rectangular loop be placed in such a way that its plane makes an angle \( \theta \) with the direction of the magnetic field \( \vec{B} \).
Magnetic force on a current-carrying conductor of length \( \vec{l} \) is given by:
\( \vec{F} = I (\vec{l} \times \vec{B}) \)
In a rectangular loop, the opposite sides experience equal and opposite forces, but these forces do not act along the same line. Hence, they form a couple which produces a torque.
Magnitude of Torque:
Let the area of the rectangular loop be:
\( A = l \times b \)
Torque \( \tau \) is given by:
\( \tau = IAB \sin \theta \)
Where:
Define the magnetic moment \( \vec{m} \) of the loop as:
\( \vec{m} = I \vec{A} \)
(Direction of \( \vec{A} \) is given by the right-hand rule perpendicular to the plane of the loop)
Then, torque in vector form is:
\( \vec{\tau} = \vec{m} \times \vec{B} \)
The torque acting on a rectangular current loop placed in a uniform magnetic field is:
\( \tau = IAB \sin \theta \), and in vector form, \( \vec{\tau} = \vec{m} \times \vec{B} \)

हमारी तथाकथित विकसित सभ्यता अपनी ही प्राचीन ज्ञान परंपरा को भूलकर प्रकृति के साथ खिलवाड़ करते हुए विनाश को रास्ता दे रही है। ‘अपना मालवा....’ पाठ के आधार पर लिखिए कि ऐसा कैसे और क्यों हो रहा है।