For a hydrogen atom, the electron revolves in a circular orbit. The centripetal force is provided by the electrostatic force between the proton and electron.
Step 1: Electrostatic force:
\[
F = \frac{1}{4\pi \epsilon_0} \frac{e^2}{r^2},
\]
where \( e \) is the electron charge, \( r \) is the radius, and \( \epsilon_0 \) is the permittivity of free space.
Centripetal force:
\[
\frac{m v^2}{r} = \frac{1}{4\pi \epsilon_0} \frac{e^2}{r^2} \quad \Rightarrow \quad m v^2 = \frac{e^2}{4\pi \epsilon_0 r}, \quad \cdots (1)
\]
where \( m \) is the electron mass, \( v \) is velocity.
Step 2: Bohr’s quantization (third postulate):
\[
m v r = \frac{n h}{2\pi}, \quad \Rightarrow \quad v = \frac{n h}{2\pi m r}, \quad \cdots (2)
\]
where \( n \) is the principal quantum number, \( h \) is Planck’s constant.
Step 3: Substitute \( v \) into (1):
\[
m \left( \frac{n h}{2\pi m r} \right)^2 = \frac{e^2}{4\pi \epsilon_0 r}.
\]
\[
\frac{n^2 h^2}{4\pi^2 m r^2} = \frac{e^2}{4\pi \epsilon_0 r} \quad \Rightarrow \quad n^2 h^2 = 4\pi^2 m r \cdot \frac{e^2}{4\pi \epsilon_0} \quad \Rightarrow \quad r = \frac{n^2 h^2 4\pi \epsilon_0}{4\pi^2 m e^2}.
\]
\[
r = \frac{n^2 h^2 \epsilon_0}{\pi m e^2}.
\]
Answer: \( r_n = \frac{n^2 h^2 \epsilon_0}{\pi m e^2} \).