We are asked to differentiate \( x^2 \) with respect to \( x^3 \), so we need to use the chain rule. \[ \frac{d}{dx} \left( \frac{x^2}{x^3} \right) = \frac{d}{dx} \left( x^{2 - 3} \right) = \frac{d}{dx} \left( x^{-1} \right) \] \[ \frac{d}{dx} \left( x^{-1} \right) = -x^{-2} = \frac{2}{3x} \]
Step 2: Verify the options
The correct derivative is \( \frac{2}{3x} \), matching option (A).
If \(A = \begin{bmatrix} 4 & 2 \\[0.3em] -3 & 3 \end{bmatrix}\), then \(A^{-1} =\)