We are asked to differentiate \( x^2 \) with respect to \( x^3 \), so we need to use the chain rule. \[ \frac{d}{dx} \left( \frac{x^2}{x^3} \right) = \frac{d}{dx} \left( x^{2 - 3} \right) = \frac{d}{dx} \left( x^{-1} \right) \] \[ \frac{d}{dx} \left( x^{-1} \right) = -x^{-2} = \frac{2}{3x} \]
Step 2: Verify the options
The correct derivative is \( \frac{2}{3x} \), matching option (A).
A store has been selling calculators at Rs. 350 each. A market survey indicates that a reduction in price (\( p \)) of calculators increases the number of units (\( x \)) sold. The relation between the price and quantity sold is given by the demand function:
\[ p = 450 - \frac{x}{2}. \]
Based on the above information, answer the following questions:
Rohit, Jaspreet, and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit's selection is \( \frac{1}{5} \), Jaspreet's selection is \( \frac{1}{3} \), and Alia's selection is \( \frac{1}{4} \). The events of selection are independent of each other.
Based on the above information, answer the following questions:
An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions: