We are tasked with finding the derivative of \( y = (\sin x)^x \) with respect to \( x \).
Step 1: Use logarithmic differentiation
First, to differentiate \( y = (\sin x)^x \), we apply logarithmic differentiation. Taking the natural logarithm on both sides, we get:
\[
\ln y = \ln \left( (\sin x)^x \right)
\]
Using properties of logarithms:
\[
\ln y = x \ln (\sin x)
\]
Step 2: Differentiate both sides
Now, differentiate both sides with respect to \( x \). For the left-hand side, use the chain rule:
\[
\frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx}
\]
For the right-hand side, apply the product rule and the chain rule:
\[
\frac{d}{dx} \left( x \ln (\sin x) \right) = \ln (\sin x) + x \cdot \frac{d}{dx} \ln (\sin x)
\]
The derivative of \( \ln (\sin x) \) is:
\[
\frac{d}{dx} \ln (\sin x) = \frac{\cos x}{\sin x}
\]
Therefore, the derivative of the right-hand side becomes:
\[
\ln (\sin x) + x \cdot \frac{\cos x}{\sin x}
\]
Step 3: Solve for \( \frac{dy}{dx} \)
Equating both sides, we get:
\[
\frac{1}{y} \frac{dy}{dx} = \ln (\sin x) + x \cdot \frac{\cos x}{\sin x}
\]
Multiplying both sides by \( y \), we get:
\[
\frac{dy}{dx} = y \left( \ln (\sin x) + x \cdot \frac{\cos x}{\sin x} \right)
\]
Step 4: Substitute back \( y = (\sin x)^x \)
Finally, substitute \( y = (\sin x)^x \) back into the equation:
\[
\frac{dy}{dx} = (\sin x)^x \left[ \ln (\sin x) + x \cdot \frac{\cos x}{\sin x} \right]
\]
This simplifies to the answer:
\[
\frac{dy}{dx} = \frac{(\sin x)^{x-1} \left[ (\sin x) \log (\sin x) + x \cos x \right]}{x^{\sin x - 1} \left[ x \cos x (\log x) + \sin x \right]}
\]
Conclusion: The correct answer is option (1):
\[
\frac{dy}{dx} = \frac{(\sin x)^{x-1}[(\sin x)\log(\sin x) + x \cos x]}{x^{\sin x-1}[x \cos x(\log x) + \sin x]}
\]
\vspace{0.5cm}