Put sin x = t
\(\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}\)
\(Let \ sin \ x = t ⇒ cos \ x\ dx = dt\)
∴ \(∫\)\(\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}\ dx\)= \(∫\frac {dt}{(1-t)(2-t)}\)
\(Let\) \(\frac {1}{(1-t)(2-t)}\) = \(\frac {A}{(1-t)}+\frac {B}{(2-t)}\)
\(1 = A(2-t)+B(1-t) \) \( ...(1)\)
\(Substituting\ t = 2 \ and \ then\ t = 1 \ in \ equation \ (1), we\ obtain\)
\(A = 1\ and\ B = −1\)
∴ \(\frac {1}{(1-t)(2-t)}\) = \(\frac {1}{(1-t)}-\frac {1}{(2-t)}\)
⇒ \(∫\)\(\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}\ dx\) = \(∫\)\([\frac {1}{(1-t)}-\frac {1}{(2-t)}]\ dt\)
= \(-log\ |1-t|+log\ |2-t|+C\)
= \(log\ |\frac {2-t}{1-t}|+C\)
= \(log\ |\frac {2-sin\ x}{1-sin\ x}|+C\)
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is:
The number of formulas used to decompose the given improper rational functions is given below. By using the given expressions, we can quickly write the integrand as a sum of proper rational functions.
For examples,