When simplifying complex trigonometric expressions, it's often helpful to convert all terms into sines and cosines.
Use fundamental identities: \(\csc\theta = 1/\sin\theta\), \(\sec\theta = 1/\cos\theta\), \(\cot\theta = \cos\theta/\sin\theta\).
Look for terms that cancel out or simplify.
Let the expression be E.
\( E = \cos\theta (\csc\theta - \sec\theta) - \cot\theta \)
Convert all terms to \(\sin\theta\) and \(\cos\theta\):
\(\csc\theta = \frac{1}{\sin\theta}\)
\(\sec\theta = \frac{1}{\cos\theta}\)
\(\cot\theta = \frac{\cos\theta}{\sin\theta}\)
Substitute these into the expression:
\( E = \cos\theta \left( \frac{1}{\sin\theta} - \frac{1}{\cos\theta} \right) - \frac{\cos\theta}{\sin\theta} \)
Distribute \(\cos\theta\) in the first term:
\( E = \cos\theta \cdot \frac{1}{\sin\theta} - \cos\theta \cdot \frac{1}{\cos\theta} - \frac{\cos\theta}{\sin\theta} \)
\( E = \frac{\cos\theta}{\sin\theta} - 1 - \frac{\cos\theta}{\sin\theta} \)
The terms \(\frac{\cos\theta}{\sin\theta}\) and \(-\frac{\cos\theta}{\sin\theta}\) cancel out.
\( E = -1 \)
This matches option (a).
\[ \boxed{-1} \]