Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
We have \(\vec{u}=3\hat{i}-\hat{j}\) and \(\vec{v}=2\hat{i}+\hat{j}-\lambda\hat{k}\) with angle \(\cos^{-1}\!\left(\dfrac{\sqrt{5}}{2\sqrt{7}}\right)\) between them. Write \(\vec{v}=\vec{v}_1+\vec{v}_2\) where \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\). We need \(|\vec{v}_1|^2+|\vec{v}_2|^2\).
Use the cosine formula for the angle between vectors: \[ \cos\theta=\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}. \] For an orthogonal decomposition \(\vec{v}=\vec{v}_1+\vec{v}_2\) with \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\), we have Pythagoras: \[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2. \]
Step 1: Compute \(\lambda\) from the angle condition.
\[ \vec{u}\cdot\vec{v}=3\cdot2+(-1)\cdot1=5,\quad |\vec{u}|=\sqrt{3^2+(-1)^2}=\sqrt{10},\quad |\vec{v}|=\sqrt{2^2+1^2+\lambda^2}=\sqrt{5+\lambda^2}. \] \[ \frac{5}{\sqrt{10}\,\sqrt{5+\lambda^2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{10(5+\lambda^2)^{1/2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{2(5+\lambda^2)}=\frac{5}{28} \] \[ \Rightarrow\ 2(5+\lambda^2)=28\ \Rightarrow\ \lambda^2=9\ \Rightarrow\ \lambda=3\;(\lambda>0). \]
Step 2: Use orthogonal decomposition to get the required sum.
\[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2=5+\lambda^2=5+9=14. \]
\(|\vec{v}_1|^2+|\vec{v}_2|^2=14\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
