Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
We have \(\vec{u}=3\hat{i}-\hat{j}\) and \(\vec{v}=2\hat{i}+\hat{j}-\lambda\hat{k}\) with angle \(\cos^{-1}\!\left(\dfrac{\sqrt{5}}{2\sqrt{7}}\right)\) between them. Write \(\vec{v}=\vec{v}_1+\vec{v}_2\) where \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\). We need \(|\vec{v}_1|^2+|\vec{v}_2|^2\).
Use the cosine formula for the angle between vectors: \[ \cos\theta=\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}. \] For an orthogonal decomposition \(\vec{v}=\vec{v}_1+\vec{v}_2\) with \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\), we have Pythagoras: \[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2. \]
Step 1: Compute \(\lambda\) from the angle condition.
\[ \vec{u}\cdot\vec{v}=3\cdot2+(-1)\cdot1=5,\quad |\vec{u}|=\sqrt{3^2+(-1)^2}=\sqrt{10},\quad |\vec{v}|=\sqrt{2^2+1^2+\lambda^2}=\sqrt{5+\lambda^2}. \] \[ \frac{5}{\sqrt{10}\,\sqrt{5+\lambda^2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{10(5+\lambda^2)^{1/2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{2(5+\lambda^2)}=\frac{5}{28} \] \[ \Rightarrow\ 2(5+\lambda^2)=28\ \Rightarrow\ \lambda^2=9\ \Rightarrow\ \lambda=3\;(\lambda>0). \]
Step 2: Use orthogonal decomposition to get the required sum.
\[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2=5+\lambda^2=5+9=14. \]
\(|\vec{v}_1|^2+|\vec{v}_2|^2=14\).
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
