Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
We have \(\vec{u}=3\hat{i}-\hat{j}\) and \(\vec{v}=2\hat{i}+\hat{j}-\lambda\hat{k}\) with angle \(\cos^{-1}\!\left(\dfrac{\sqrt{5}}{2\sqrt{7}}\right)\) between them. Write \(\vec{v}=\vec{v}_1+\vec{v}_2\) where \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\). We need \(|\vec{v}_1|^2+|\vec{v}_2|^2\).
Use the cosine formula for the angle between vectors: \[ \cos\theta=\frac{\vec{u}\cdot\vec{v}}{|\vec{u}||\vec{v}|}. \] For an orthogonal decomposition \(\vec{v}=\vec{v}_1+\vec{v}_2\) with \(\vec{v}_1\parallel\vec{u}\) and \(\vec{v}_2\perp\vec{u}\), we have Pythagoras: \[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2. \]
Step 1: Compute \(\lambda\) from the angle condition.
\[ \vec{u}\cdot\vec{v}=3\cdot2+(-1)\cdot1=5,\quad |\vec{u}|=\sqrt{3^2+(-1)^2}=\sqrt{10},\quad |\vec{v}|=\sqrt{2^2+1^2+\lambda^2}=\sqrt{5+\lambda^2}. \] \[ \frac{5}{\sqrt{10}\,\sqrt{5+\lambda^2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{10(5+\lambda^2)^{1/2}}=\frac{\sqrt{5}}{2\sqrt{7}} \ \Rightarrow\ \frac{5}{2(5+\lambda^2)}=\frac{5}{28} \] \[ \Rightarrow\ 2(5+\lambda^2)=28\ \Rightarrow\ \lambda^2=9\ \Rightarrow\ \lambda=3\;(\lambda>0). \]
Step 2: Use orthogonal decomposition to get the required sum.
\[ |\vec{v}_1|^2+|\vec{v}_2|^2=|\vec{v}|^2=5+\lambda^2=5+9=14. \]
\(|\vec{v}_1|^2+|\vec{v}_2|^2=14\).
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
The molar mass of the water insoluble product formed from the fusion of chromite ore \(FeCr_2\text{O}_4\) with \(Na_2\text{CO}_3\) in presence of \(O_2\) is ....... g mol\(^{-1}\):
Given below are some nitrogen containing compounds:
Each of them is treated with HCl separately. 1.0 g of the most basic compound will consume ...... mg of HCl.
(Given Molar mass in g mol\(^{-1}\): C = 12, H = 1, O = 16, Cl = 35.5.)
