Identify the center and radius of each circle:
- \( C_1 : x^2 + y^2 = 25 \) has center \( (0, 0) \) and radius \( R_1 = 5 \).
- \( C_2 : (x - \alpha)^2 + y^2 = 16 \) has center \( (\alpha, 0) \) and radius \( R_2 = 4 \).
Distance between centers:
\[ d = \alpha \]
Length of the common chord:
\[ \beta = 2 \sqrt{5^2 - \left( \frac{\alpha^2 + 9}{2\alpha} \right)^2} = 2 \sqrt{25 - \left( \frac{\alpha^2 + 9}{2\alpha} \right)^2}. \]
Using \( \sin \theta = \frac{\sqrt{63}}{8} \), calculate \( \alpha \beta \):
\[ \alpha \beta = 5 \sqrt{63} \]
Final calculation: \( (\alpha \beta)^2 = 25 \times 63 =1575 \)