\(\frac{1}{5}\)
\(\frac{3}{5}\)
\(\frac{1}{2}\)
\(\frac{2}{5}\)
Required probability = \(\frac{1}{5}\)
A positive, singly ionized atom of mass number $ A_M $ is accelerated from rest by the voltage $ 192 \, \text{V} $. Thereafter, it enters a rectangular region of width $ w $ with magnetic field $ \vec{B}_0 = 0.1\hat{k} \, \text{T} $. The ion finally hits a detector at the distance $ x $ below its starting trajectory. Which of the following option(s) is(are) correct?
$ \text{(Given: Mass of neutron/proton = } \frac{5}{3} \times 10^{-27} \, \text{kg, charge of the electron = } 1.6 \times 10^{-19} \, \text{C).} $
Probability is defined as the extent to which an event is likely to happen. It is measured by the ratio of the favorable outcome to the total number of possible outcomes.
The set of possible results or outcomes in a trial is referred to as the sample space. For instance, when we flip a coin, the possible outcomes are heads or tails. On the other hand, when we roll a single die, the possible outcomes are 1, 2, 3, 4, 5, 6.
In a sample space, a sample point is one of the possible results. For instance, when using a deck of cards, as an outcome, a sample point would be the ace of spades or the queen of hearts.
When the results of a series of actions are always uncertain, this is referred to as a trial or an experiment. For Instance, choosing a card from a deck, tossing a coin, or rolling a die, the results are uncertain.
An event is a single outcome that happens as a result of a trial or experiment. For instance, getting a three on a die or an eight of clubs when selecting a card from a deck are happenings of certain events.
A possible outcome of a trial or experiment is referred to as a result of an outcome. For instance, tossing a coin could result in heads or tails. Here the possible outcomes are heads or tails. While the possible outcomes of dice thrown are 1, 2, 3, 4, 5, or 6.