Consider the reaction: $$ X_2Y(g) \rightleftharpoons X_2(g) + \frac{1}{2} Y_2(g) $$ The equation representing the correct relationship between the degree of dissociation \( x \) of \( X_2Y(g) \) with its equilibrium constant \( K_p \) is:
Show Hint
For reactions with small degrees of dissociation, the equilibrium constant can be used to relate the degree of dissociation to the partial pressures of the products and reactants.
The equilibrium constant \( K_p \) for the reaction is given by:
\[
K_p = \frac{p_{X_2} \cdot p_{Y_2}^{1/2}}{p_{X_2Y}}.
\]
Using the degree of dissociation \( x \) for the reactant \( X_2Y \), the partial pressures at equilibrium are:
\[
p_{X_2Y} = p_0 - x \cdot p_0, \quad p_{X_2} = x \cdot p_0, \quad p_{Y_2} = \frac{x \cdot p_0}{2}.
\]
Substituting these into the expression for \( K_p \) and simplifying for small \( x \), we get:
\[
x = \sqrt{\frac{2K_p}{p}}.
\]
Thus, the correct answer is \( x = \sqrt{\frac{2K_p}{p}} \).
Was this answer helpful?
0
0
Top Questions on Chemical Equilibria and Dissociation