To find the area of the image \( T(G) \) under the transformation given by the map \( T : G \to \mathbb{R}^2 \), we will calculate the Jacobian determinant of the transformation \( T \). This process is essential to measure how area transforms under \( T \).
The transformation is provided by: \(T(s,t) = \left( \frac{\pi s (1-t)}{2}, \ \frac{\pi (1-s)t}{2} \right)\) for \((s,t) \in G\).
The Jacobian matrix \( JT(s, t) \) is the matrix of first-order partial derivatives of \( T \): \(JT(s, t) = \begin{bmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\pi (1-t)}{2} & \frac{-\pi s}{2} \\ \frac{-\pi t}{2} & \frac{\pi (1-s)}{2} \end{bmatrix}\)where \(x = \frac{\pi s (1-t)}{2}\) and \(y = \frac{\pi (1-s) t}{2}\).
The determinant of the Jacobian matrix is: \(\text{det}(JT) = \left( \frac{\pi (1-t)}{2} \right) \left( \frac{\pi (1-s)}{2} \right) - \left( \frac{-\pi s}{2} \right) \left( \frac{-\pi t}{2} \right)\)
Simplifying, we get: \(\text{det}(JT) = \frac{\pi^2 (1-t)(1-s)}{4} - \frac{\pi^2 st}{4} = \frac{\pi^2}{4} \left( (1-t)(1-s) - st \right) = \frac{\pi^2}{4} \left( 1 - s - t + st - st \right) = \frac{\pi^2}{4} (1 - s - t)\)
We integrate this determinant over the region \( G = \{ (s,t) : 0 < s < 1, 0 < t < 1 \} \): \(\int_0^1 \int_0^1 \frac{\pi^2}{4} (1 - s - t) \, ds \, dt\)
Step-by-step integration:
Thus, the total area is: \(\frac{\pi^2}{4} \int_0^1 \left( \frac{1}{2} - t \right) \, dt = \frac{\pi^2}{4} \times \frac{1}{4} = \frac{\pi^2}{8}\)
Conclusion: The area of the image \( T(G) \) is \( \frac{\pi^2}{8} \).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.