24
Step 1: Interpret the conditions We are told: - \( Q^{-1} = Q^T \) $\Rightarrow $ \( Q \) is an orthogonal matrix
. - \( Q \) is invertible with integer entries $\Rightarrow$ entries must be from \(−1, 0, 1\).
- \( PQ = QP \) $\Rightarrow$ \( Q \) commutes with the diagonal matrix \( P \).
Step 2: Structure of \( Q \) The matrix \( P \) has eigenvalues 2, 2, and 3. This means the eigenspace corresponding to 2 is 2-dimensional (spanned by standard basis vectors \( e_1, e_2 \)), and the eigenspace corresponding to 3 is 1-dimensional (spanned by \( e_3 \)).
Since \( Q \) must commute with \( P \), it must preserve these eigenspaces. So \( Q \) must be of the form: \[ Q = \begin{pmatrix} Q_1 & 0
0 & \pm 1 \end{pmatrix} \] where \( Q_1 \) is a \( 2 \times 2 \) orthogonal matrix with integer entries.
Step 3: Count such matrices The number of \( 2 \times 2 \) orthogonal matrices over integers is 4 (rotations and reflections in 2D with integer entries): - Identity, swap rows, sign flips, etc. And for the bottom-right corner (\( \pm1 \)), we have 2 choices. So total number of such matrices: \[ 4 \times 2 = \boxed{8} \]
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: