Rewrite \( f(x) \) in terms of piecewise functions based on the value of \( x \):
\[ f(x) = e^{-\lvert \ln x \rvert} = \begin{cases} e^{\ln x} = x & \text{for } x \geq 1 \\ e^{-\ln x} = \frac{1}{x} & \text{for } 0 < x < 1 \end{cases} \]
Check for continuity. The function \( f(x) \) is continuous for \( x > 0 \) because:
Thus, \( f(x) \) is continuous at \( x = 1 \) and everywhere else in \( (0, \infty) \). So, \( m = 0 \).
Check for differentiability at \( x = 1 \). To check differentiability at \( x = 1 \), compute the left-hand derivative and the right-hand derivative at \( x = 1 \).
For \( 0 < x < 1 \), \( f(x) = \frac{1}{x} \), so:
\[ f'_{-}(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{\frac{1}{x} - 1}{x - 1} = -1. \]
For \( x \geq 1 \), \( f(x) = x \), so:
\[ f'_{+}(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x - 1}{x - 1} = 1. \]
Since \( f'_{-}(1) \neq f'_{+}(1) \), \( f(x) \) is not differentiable at \( x = 1 \). Therefore, \( n = 1 \).
Conclusion:
\[ m + n = 0 + 1 = 1 \]
Thus, the answer is: 1
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)