Step 1: Write reduction reaction.
The reduction of FeO by hydrogen is:
\[
FeO(s) + H_2(g) ⇌ Fe(s) + H_2O(g)
\]
Step 2: Relation of Gibbs energies.
For this reaction, Gibbs energy change is:
\[
ΔG° = ΔG°(FeO) - \tfrac{1}{2} ΔG°(H_2O \, formation)
\]
Step 3: Evaluate each ΔG°.
At T = 1000 K:
- For FeO formation:
\[
ΔG° = -264900 + 65(1000) = -199900 \, J
\]
- For H$_2$O formation per mole (since 2 H$_2$ + O$_2$ = 2 H$_2$O):
\[
ΔG° = \tfrac{-492900 + 109(1000)}{2} = \tfrac{-383900}{2} = -191950 \, J
\]
Step 4: Gibbs free energy for reduction.
\[
ΔG° = (-199900) - (-191950) = -7950 \, J
\]
Step 5: Relation with equilibrium constant.
\[
ΔG° = -RT \ln K, \quad K = \frac{p_{H2O}}{p_{H2}}
\]
At T = 1000 K, R = 8.314 J mol$^{-1}$K$^{-1}$:
\[
K = \exp\left(\frac{-ΔG°}{RT}\right) = \exp\left(\frac{7950}{8314 \times 1000}\right)
\]
\[
K = \exp(0.956) = 2.60
\]
Wait, let us check again:
Actually, ΔG° = -RT ln(pH2O/pH2).
So,
\[
\frac{p_{H2O}}{p_{H2}} = \exp\left(\frac{ΔG°}{-RT}\right)
\]
\[
= \exp\left(\frac{-7950}{-8314 \times 1000}\right) = \exp(-0.00096)
\]
\[
= 0.63
\]
Final Answer:
\[
\boxed{\tfrac{p_{H2O}}{p_{H2}} = 0.63}
\]