Consider the following reaction approaching equilibrium at \(27^\circ \text{C}\) and 1 atm pressure:
\[\text{A + B} \rightleftharpoons \text{C + D}\]
\[K_f = 10^3, \quad K_r = 10^2\]
The standard Gibbs energy change (\(\Delta_r G^\circ\)) at \(27^\circ \text{C}\) is — kJ mol\(^{-1}\) (Nearest integer).
For Gibbs free energy calculations:
Use the relationship \(\Delta_r G^\circ = -RT \ln K\).
Ensure the equilibrium constant is correctly derived from forward and reverse reaction constants.
1. Relationship Between \(\Delta_r G^\circ\) and Equilibrium Constant:
The standard Gibbs free energy change is related to the equilibrium constant (\(K\)) as:
\[\Delta_r G^\circ = -RT \ln K.\]
2. Calculate the Overall Equilibrium Constant (\(K\)):
The equilibrium constant for the reaction is:
\[K = \frac{K_f}{K_r} = \frac{10^3}{10^2} = 10.\]
3.Substitute Values:
Since \(K = 10\), \(\ln K = \ln 10\). Therefore:
\[\Delta_r G^\circ = -RT \ln K = -(8.3 \times 10^{-3}~\text{kJ mol}^{-1}~\text{K}^{-1}) \times 300~\text{K} \times 2.3.\]
\[\Delta_r G^\circ = -6~\text{kJ mol}^{-1}.\]
4. Result:
The standard Gibbs energy change is \(6~\text{kJ mol}^{-1}\).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.