At equilibrium, total output (income) is equal to total expenditure:
\[ Y = C + I_0 + G_0 \]
Disposable income is given by:
\[ Y_d = Y - \text{Taxes} = Y - (t Y) = Y(1 - 0.2) = 0.8Y \]
\[ C = 250 + 0.25 (0.8Y) \]
\[ C = 250 + 0.2Y \]
\[ Y = (250 + 0.2Y) + 100 + 50 \]
\[ Y - 0.2Y = 250 + 100 + 50 \]
\[ 0.8Y = 400 \]
\[ Y = \frac{400}{0.8} = 500 \]
Substituting \( Y = 500 \) into the consumption function:
\[ C = 250 + 0.2(500) \]
\[ C = 250 + 100 = 350 \]
The equilibrium level of consumption is 350.