Consider the following frequency distribution:
| Value | 4 | 5 | 8 | 9 | 6 | 12 | 11 |
|---|---|---|---|---|---|---|---|
| Frequency | 5 | $ f_1 $ | $ f_2 $ | 2 | 1 | 1 | 3 |
Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.
For the given frequency distribution, let:
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
(P) → (3), (Q) → (2), (R) → (5), (S) → (4)
Step 1: Use total frequency = 19
\[ 5 + f_1 + f_2 + 2 + 1 + 1 + 3 = 19 \Rightarrow f_1 + f_2 = 7 \quad \cdots (1) \]
Step 2: Median = 6 ⇒ Cumulative frequency up to 6 is ≥ 9.5
Frequency table (partial):
| Value | 4 | 5 | 6 | 8 | 9 | 11 | 12 |
|---|---|---|---|---|---|---|---|
| Freq | 5 | \( f_1 \) | 1 | \( f_2 \) | 2 | 3 | 1 |
Cumulative frequency up to 6: \[ 5 + f_1 + 1 = 6 + f_1 \geq 9.5 \Rightarrow f_1 \geq 4 \] From (1): \( f_2 = 7 - f_1 \)
Try \( f_1 = 4 \Rightarrow f_2 = 3 \)
Step 3: Calculate (P)
\[ 7f_1 + 9f_2 = 7 \cdot 4 + 9 \cdot 3 = 28 + 27 = 55 \Rightarrow (P) \to (5) \]
Step 4: Construct full distribution
| Value (x) | 4 | 5 | 6 | 8 | 9 | 11 | 12 | Total |
|---|---|---|---|---|---|---|---|---|
| Freq (f) | 5 | 4 | 1 | 3 | 2 | 3 | 1 | 19 |
| \( xf \) | 20 | 20 | 6 | 24 | 18 | 33 | 12 | 133 |
Mean: \[ \bar{x} = \frac{133}{19} = 7 \]
(Q): Mean deviation about mean (\( \alpha \))
\[ \alpha = \frac{1}{19} \sum f_i |x_i - 7| = \frac{48}{19} \Rightarrow 19\alpha = 48 \Rightarrow (Q) \to (3) \]
(R): Mean deviation about median (\( \beta \))
\[ \beta = \frac{1}{19} \sum f_i |x_i - 6| = \frac{47}{19} \Rightarrow 19\beta = 47 \Rightarrow (R) \to (2) \]
(S): Variance \( \sigma^2 \)
Given: \[ \sum f(x - 7)^2 = 146 \Rightarrow \sigma^2 = \frac{146}{19} \Rightarrow 19\sigma^2 = 146 \Rightarrow (S) \to (1) \]
Final Matching:
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?