Consider the following frequency distribution:
Value | 4 | 5 | 8 | 9 | 6 | 12 | 11 |
---|---|---|---|---|---|---|---|
Frequency | 5 | $ f_1 $ | $ f_2 $ | 2 | 1 | 1 | 3 |
Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.
For the given frequency distribution, let:
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List-I
List-II
(P) → (3), (Q) → (2), (R) → (5), (S) → (4)
Step 1: Use total frequency = 19
\[ 5 + f_1 + f_2 + 2 + 1 + 1 + 3 = 19 \Rightarrow f_1 + f_2 = 7 \quad \cdots (1) \]
Step 2: Median = 6 ⇒ Cumulative frequency up to 6 is ≥ 9.5
Frequency table (partial):
Value | 4 | 5 | 6 | 8 | 9 | 11 | 12 |
---|---|---|---|---|---|---|---|
Freq | 5 | \( f_1 \) | 1 | \( f_2 \) | 2 | 3 | 1 |
Cumulative frequency up to 6: \[ 5 + f_1 + 1 = 6 + f_1 \geq 9.5 \Rightarrow f_1 \geq 4 \] From (1): \( f_2 = 7 - f_1 \)
Try \( f_1 = 4 \Rightarrow f_2 = 3 \)
Step 3: Calculate (P)
\[ 7f_1 + 9f_2 = 7 \cdot 4 + 9 \cdot 3 = 28 + 27 = 55 \Rightarrow (P) \to (5) \]
Step 4: Construct full distribution
Value (x) | 4 | 5 | 6 | 8 | 9 | 11 | 12 | Total |
---|---|---|---|---|---|---|---|---|
Freq (f) | 5 | 4 | 1 | 3 | 2 | 3 | 1 | 19 |
\( xf \) | 20 | 20 | 6 | 24 | 18 | 33 | 12 | 133 |
Mean: \[ \bar{x} = \frac{133}{19} = 7 \]
(Q): Mean deviation about mean (\( \alpha \))
\[ \alpha = \frac{1}{19} \sum f_i |x_i - 7| = \frac{48}{19} \Rightarrow 19\alpha = 48 \Rightarrow (Q) \to (3) \]
(R): Mean deviation about median (\( \beta \))
\[ \beta = \frac{1}{19} \sum f_i |x_i - 6| = \frac{47}{19} \Rightarrow 19\beta = 47 \Rightarrow (R) \to (2) \]
(S): Variance \( \sigma^2 \)
Given: \[ \sum f(x - 7)^2 = 146 \Rightarrow \sigma^2 = \frac{146}{19} \Rightarrow 19\sigma^2 = 146 \Rightarrow (S) \to (1) \]
Final Matching:
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.