Given Reactions and Enthalpy Changes:
\( 2\text{C(s)} + \text{O}_2 \rightarrow 2\text{CO}_2 \qquad \Delta H = -393.5 \times 2 = -787 \text{ kJ} \qquad (1) \)
\( 3\text{H}_2 + \frac{3}{2}\text{O}_2 \rightarrow 3\text{H}_2\text{O} \qquad \Delta H = -241.5 \times 3 = -725.4 \text{ kJ} \qquad (2) \)
\( \text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O} \qquad \Delta H = -1234.7 \text{ kJ} \qquad (3) \)
\( 3\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \qquad \Delta H = +1234.7 \text{ kJ} \qquad (4) \)
Target Reaction:
\( 2\text{C(s)} + 3\text{H}_2\text{(g)} + \frac{1}{2}\text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} \qquad (5) \)
Equation (5) is derived as:
\( (5) = (1) + (2) + (4) \)
\( \Delta H = (-787) + (-725.4) + (1234.7) \)
\( \Delta H = -277.7 \text{ kJ} \implies \Delta H \approx -278 \text{ kJ} \)
Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: