Given Reactions and Enthalpy Changes:
\( 2\text{C(s)} + \text{O}_2 \rightarrow 2\text{CO}_2 \qquad \Delta H = -393.5 \times 2 = -787 \text{ kJ} \qquad (1) \)
\( 3\text{H}_2 + \frac{3}{2}\text{O}_2 \rightarrow 3\text{H}_2\text{O} \qquad \Delta H = -241.5 \times 3 = -725.4 \text{ kJ} \qquad (2) \)
\( \text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \rightarrow 2\text{CO}_2 + 3\text{H}_2\text{O} \qquad \Delta H = -1234.7 \text{ kJ} \qquad (3) \)
\( 3\text{H}_2\text{O} + 2\text{CO}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} + 3\text{O}_2 \qquad \Delta H = +1234.7 \text{ kJ} \qquad (4) \)
Target Reaction:
\( 2\text{C(s)} + 3\text{H}_2\text{(g)} + \frac{1}{2}\text{O}_2 \rightarrow \text{C}_2\text{H}_5\text{OH} \qquad (5) \)
Equation (5) is derived as:
\( (5) = (1) + (2) + (4) \)
\( \Delta H = (-787) + (-725.4) + (1234.7) \)
\( \Delta H = -277.7 \text{ kJ} \implies \Delta H \approx -278 \text{ kJ} \)
Calculate the potential for half-cell containing 0.01 M K\(_2\)Cr\(_2\)O\(_7\)(aq), 0.01 M Cr\(^{3+}\)(aq), and 1.0 x 10\(^{-4}\) M H\(^+\)(aq).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: