Step 1: Standard form and integrating factor.
The given equation is linear:
\[
\frac{dy}{dx} + 10y = f(x).
\]
Integrating factor (I.F.) = \( e^{10x} \).
Step 2: Multiply both sides by I.F.
\[
\frac{d}{dx}(y e^{10x}) = f(x) e^{10x}.
\]
Integrate both sides:
\[
y e^{10x} = \int f(x) e^{10x} dx + C.
\]
Step 3: Take limit as \( x \to \infty \).
If \( f(x) \to 1 \), for large \( x \),
\[
y \approx e^{-10x} \int e^{10x} dx = e^{-10x} \cdot \frac{1}{10} e^{10x} = \frac{1}{10}.
\]
Hence \( \lim_{x \to \infty} y = \frac{1}{10}. \)
Final Answer: \[ \boxed{\frac{1}{10}} \]
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.