Step 1: Given data points:
\[
x_0 = 1, \quad x_1 = 2, \quad x_2 = 3
\]
\[
f(x_0) = 0, \quad f(x_1) = 0.3010, \quad f(x_2) = 0.4771
\]
Step 2: Compute divided differences:
\[
f[x_0, x_1] = \frac{0.3010 - 0}{2 - 1} = 0.3010
\]
\[
f[x_1, x_2] = \frac{0.4771 - 0.3010}{3 - 2} = 0.1761
\]
\[
f[x_0, x_1, x_2] = \frac{0.1761 - 0.3010}{3 - 1} = -0.06245
\]
Step 3: Newton's interpolation formula:
\[
f(x) = f(x_0) + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1)
\]
Substituting the values:
\[
f(1.5) = 0 + (0.3010)(1.5 - 1) + (-0.06245)(1.5 - 1)(1.5 - 2)
\]
\[
= 0.3010(0.5) + (-0.06245)(0.5)(-0.5)
\]
\[
= 0.1505 + 0.0156 = 0.1661
\]
Step 4: Final Answer (Rounded to 2 decimal places):
\[
\approx 0.17
\]
Conclusion: The estimated value of \( f(1.5) \) lies in the range \( 0.16 \) to \( 0.18 \).