The relation between Gibbs free energy change (\(\Delta_r G^\circ\)) and the standard cell potential (\(E^\circ\)) is given by:
\[
\Delta_r G^\circ = -n F E^\circ
\]
where:
- \(n\) is the number of moles of electrons exchanged in the reaction,
- \(F\) is the Faraday constant (96500 C mol\(^{-1}\)),
- \(E^\circ\) is the standard electrode potential.
We also know that the Gibbs free energy change is related to the enthalpy change and entropy change as:
\[
\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ
\]
Equating both expressions for \(\Delta_r G^\circ\), we get:
\[
-n F E^\circ = \Delta_r H^\circ - T \Delta_r S^\circ
\]
Rearranging to solve for \(\Delta_r S^\circ\):
\[
\Delta_r S^\circ = \frac{\Delta_r H^\circ - (-n F E^\circ)}{T}
\]
Given:
- \(\Delta_r H^\circ = -163 \, \text{kJ/mol} = -163000 \, \text{J/mol}\),
- \(E^\circ = 1.0 \, \text{V}\),
- \(n = 2\) (since 2 electrons are involved),
- \(F = 96500 \, \text{C/mol}\),
- \(T = 300 \, \text{K}\).
Substituting the values:
\[
\Delta_r S^\circ = \frac{-163000 - (-2 \times 96500 \times 1.0)}{300}
\]
\[
\Delta_r S^\circ = \frac{-163000 + 193000}{300} = \frac{30000}{300} = 100 \, \text{J/K/mol}
\]