The reaction sequence is as follows:
Step 1: Oxidation using Jones Reagent
Jones reagent (\(\text{CrO}_3 + \text{H}_2\text{SO}_4\)) oxidizes primary alcohols (\(\text{CH}_3\text{CH}_2\text{OH}\)) to carboxylic acids. Ethanol (\(\text{CH}_3\text{CH}_2\text{OH}\)) is oxidized to acetic acid (\(\text{CH}_3\text{COOH}\)).
\[\text{CH}_3\text{CH}_2\text{OH} \rightarrow [\text{JonesReagent}] \text{CH}_3\text{COOH}.\]
Step 2: Oxidation using \(\text{KMnO}_4\)
The acetic acid (\(\text{CH}_3\text{COOH}\)) is further oxidized to carbonic acid (\(\text{H}_2\text{CO}_3\)) by \(\text{KMnO}_4\). Carbonic acid is unstable and decomposes to \(\text{CO}_2\) and water.
\[\text{CH}_3\text{COOH} \rightarrow [\text{KMnO}_4]\text{H}_2\text{CO}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O}.\]
Step 3: Decarboxylation using Soda Lime
The carbon dioxide (\(\text{CO}_2\)) reacts with soda lime (\(\text{NaOH} + \text{CaO}\)) to form methane (\(\text{CH}_4\)) via decarboxylation.
\[\text{CO}_2 + \text{NaOH} \rightarrow \text{CH}_4 + \text{Na}_2\text{CO}_3.\]
Final Product:
The major product \(P\) is methane (\(\text{CH}_4\)).
Final Answer: (1).
Consider the gas phase reaction: \[ CO + \frac{1}{2} O_2 \rightleftharpoons CO_2 \] At equilibrium for a particular temperature, the partial pressures of \( CO \), \( O_2 \), and \( CO_2 \) are found to be \( 10^{-6} \, {atm} \), \( 10^{-6} \, {atm} \), and \( 16 \, {atm} \), respectively. The equilibrium constant for the reaction is ......... \( \times 10^{10} \) (rounded off to one decimal place).
Molten steel at 1900 K having dissolved hydrogen needs to be vacuum degassed. The equilibrium partial pressure of hydrogen to be maintained to achieve 1 ppm (mass basis) of dissolved hydrogen is ......... Torr (rounded off to two decimal places). Given: For the hydrogen dissolution reaction in molten steel \( \left( \frac{1}{2} {H}_2(g) = [{H}] \right) \), the equilibrium constant (expressed in terms of ppm of dissolved H) is: \[ \log_{10} K_{eq} = \frac{1900}{T} + 2.4 \] 1 atm = 760 Torr.