Question:

Consider \( \mathbf{C} = \mathbf{A} \times \mathbf{B} \), where \( \mathbf{A} = 3\hat{i} - 2\hat{j} + 5\hat{k} \) and \( \mathbf{B} \) is a unit vector in the \( xy \)-plane, making an angle of 37° with the \( x \)-axis. The projection of \( \mathbf{C} \) on the \( x \)-axis is ................ (round off to one decimal place)

Show Hint

For cross products, remember to use the determinant form, and for the projection on an axis, use the corresponding component of the result vector.
Updated On: Sep 8, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

We are given: \[ \mathbf{A} = 3\hat{i} - 2\hat{j} + 5\hat{k}, \quad \mathbf{B} = \cos(37^\circ) \hat{i} + \sin(37^\circ) \hat{j} \] since \( \mathbf{B} \) is a unit vector in the \( xy \)-plane and makes an angle of \( 37^\circ \) with the \( x \)-axis.
Step 1: Compute the cross product \( \mathbf{A} \times \mathbf{B} \).
Using the determinant form for the cross product: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -2 & 5 \\ \cos(37^\circ) & \sin(37^\circ) & 0 \end{vmatrix} \] Expanding this determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -2 & 5 \\ \sin(37^\circ) & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 5 \\ \cos(37^\circ) & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -2 \\ \cos(37^\circ) & \sin(37^\circ) \end{vmatrix} \] Solving the determinants: \[ \mathbf{A} \times \mathbf{B} = \hat{i}(0 - 5\sin(37^\circ)) - \hat{j}(0 - 5\cos(37^\circ)) + \hat{k}(3\sin(37^\circ) + 2\cos(37^\circ)) \] \[ \mathbf{A} \times \mathbf{B} = -5\sin(37^\circ)\hat{i} + 5\cos(37^\circ)\hat{j} + \big(3\sin(37^\circ) + 2\cos(37^\circ)\big)\hat{k} \] Step 2: Find the projection of \( \mathbf{C} \) on the \( x \)-axis.
The projection of \( \mathbf{C} = \mathbf{A} \times \mathbf{B} \) on the \( x \)-axis is the \( x \)-component: \[ \text{Projection on } x\text{-axis} = -5\sin(37^\circ) \] Using \( \sin(37^\circ) \approx 0.6018 \): \[ \text{Projection on } x\text{-axis} = -5(0.6018) \approx -3.009 \] Final Answer: \[ \boxed{-3.0} \]
Was this answer helpful?
0
0