Let the coin chosen be \(C_i\) with
\[P(C_i)=\frac14,\qquad P(H\mid C_i)=\frac{i}{4},\quad i=1,2,3,4.\]
\[P(H)=\sum_{i=1}^4 P(C_i),P(H\mid C_i) =\frac14\left(\frac14+\frac24+\frac34+\frac44\right) =\frac14\cdot\frac{10}{4} =\frac{10}{16}.\]
\[P(C_1\text{ or }C_2\mid H) =\frac{P(H\mid C_1)P(C_1)+P(H\mid C_2)P(C_2)}{P(H)}.\]
\[=\frac{\frac14\cdot\frac14+\frac24\cdot\frac14}{\frac{10}{16}} =\frac{\frac{3}{16}}{\frac{10}{16}} =\frac{3}{10}.\]
\[\boxed{\frac{3}{10}}\]
Hence, the correct answer is option (C).