The function is given as:
\[
f(x) = \sec^{-1} \left( \frac{2x}{5x + 3} \right)
\]
For the domain of \( f(x) \), we need to find when:
\[
\left| \frac{2x}{5x + 3} \right| \geq 1
\]
This leads to two conditions:
1. \( \frac{2x}{5x + 3} \geq 1 \)
2. \( \frac{2x}{5x + 3} \leq -1 \)
Let's solve each inequality:
For the first inequality:
\[
\frac{2x}{5x + 3} \geq 1 \quad \Rightarrow \quad 2x \geq 5x + 3 \quad \Rightarrow \quad -3x \geq 3 \quad \Rightarrow \quad x \leq -1
\]
For the second inequality:
\[
\frac{2x}{5x + 3} \leq -1 \quad \Rightarrow \quad 2x \leq -5x - 3 \quad \Rightarrow \quad 7x \leq -3 \quad \Rightarrow \quad x \leq -\frac{3}{7}
\]
Thus, the domain of the function is:
\[
[-1, -\frac{3}{5}] \cup (-\frac{3}{5}, -\frac{3}{7}]
\]
Let:
\[
\alpha = -1, \quad \beta = -\frac{3}{5}, \quad \gamma = -\frac{3}{5}, \quad \delta = -\frac{3}{7}
\]
Now, calculate \( 3\alpha + 10(\beta + \gamma) + 21\delta \):
\[
3\alpha + 10(\beta + \gamma) + 21\delta = 3(-1) + 10\left( -\frac{3}{5} + -\frac{3}{5} \right) + 21\left( -\frac{3}{7} \right)
\]
\[
= -3 + 10\left( -\frac{6}{5} \right) + 21\left( -\frac{3}{7} \right)
\]
\[
= -3 + \left( -\frac{60}{5} \right) + \left( -\frac{63}{7} \right)
\]
\[
= -3 - 12 - 9 = -24
\]
Thus, \( |3\alpha + 10(\beta + \gamma) + 21\delta| = 24 \).