Let the sides of the triangle be \( a - d \), \( a \), and \( a + d \).
We are given that \( A - C = \frac{\pi}{2} \) and the circumradius \( R = 1 \).
Now, we start with the following relation:
\(\frac{a + d}{\sin A} = \frac{a}{\sin B} = \frac{a - d}{\sin C} = 2\)
From this, we can conclude that:
\(A = \frac{\pi}{2} + C\)
Using the sine law:
\(\sin A = \sin \left( \frac{\pi}{2} + C \right) \Rightarrow \sin A = \cos C\)
Now, we substitute this into the equation:
\(\frac{a + d}{2} = \sqrt{1 - \sin^2 C } \Rightarrow \left( \frac{a + d}{2} \right)^2 = 1 - \left( \frac{a - d}{2} \right)^2\)
Expanding both sides:
\(2 \left( a^2 + d^2 \right) / 4 = 1 \Rightarrow a^2 + d^2 = 2 \quad \text{(Equation 1)}\)
Now, using the cosine law:
\(\cos B = \frac{(a - d)^2 + (a + d)^2 - a^2}{2(a^2 - d^2)}\)
By simplifying further:
\(\sqrt{1 - \sin^2 B} = \frac{2(a^2 + d^2) - a^2}{2(a^2 - d^2)} \Rightarrow a^2 = 7/4, d^2 = 1/4\)
Now, using the area formula:
\(\Delta = \frac{a(a^2 - d^2)}{4}\)
Substitute the values of \( a^2 \) and \( d^2 \):
\(\alpha = \frac{\sqrt{7}}{2} \times \frac{6}{4 \times 4}\)
Finally, we calculate \( (64 \alpha)^2 \):
\((64 \alpha)^2 = 1008\)
Thus, the final result is \( (64 \alpha)^2 = 1008 \).
The formula for the ratio \( r \) is given by:
\(r = \frac{\Delta}{S} = \frac{\sqrt{7}}{2} \times \frac{6}{16} = \frac{4}{16} = \frac{1}{4} = 0.25\)
Thus, the value of the ratio \( r \) is 0.25.
Figure 1 shows the configuration of main scale and Vernier scale before measurement. Fig. 2 shows the configuration corresponding to the measurement of diameter $ D $ of a tube. The measured value of $ D $ is: