Consider an obtuse-angled triangle ABC in which the difference between the largest and the smallest angle is \(\frac{\pi}{2}\) and whose sides are in arithmetic progression. Suppose that the vertices of this triangle lie on a circle of radius 1.Let a be the area of the triangle ABC. Then the value of (64a)2 is

As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
In mathematics, Geometry is one of the most important topics. The concepts of Geometry are defined with respect to the planes. So, Geometry is divided into three categories based on its dimensions which are one-dimensional geometry, two-dimensional geometry, and three-dimensional geometry.
Let's consider line ‘L’ is passing through the three-dimensional plane. Now, x,y, and z are the axes of the plane, and α,β, and γ are the three angles the line making with these axes. These are called the plane's direction angles. So, correspondingly, we can very well say that cosα, cosβ, and cosγ are the direction cosines of the given line L.

Read More: Introduction to Three-Dimensional Geometry