The velocity of an electron in a Bohr orbit is inversely proportional to the principal quantum number (n):
\( v \propto \frac{1}{n} \)
For the first Bohr orbit (n=1), the velocity is \(v_1\). For the third Bohr orbit (n=3), the velocity is \(v_3\). Using the proportionality:
\( \frac{v_3}{v_1} = \frac{1/3}{1/1} = \frac{1}{3} \)
Thus, the ratio \(v_3 : v_1\) is 1:3.
Option 3: 1:3
Explanation:
1. Bohr's Velocity Equation:
v = (Z * e2) / (2 * ε0 * h * n)
where:
2. Velocity in the First Bohr Orbit (v1):
For He+, Z = 2 and n = 1.
v1 = (2 * e2) / (2 * ε0 * h * 1) = e2 / (ε0 * h)
3. Velocity in the Third Bohr Orbit (v3):
For He+, Z = 2 and n = 3.
v3 = (2 * e2) / (2 * ε0 * h * 3) = e2 / (3 * ε0 * h)
4. Determine the v3:v1 Ratio:
v3 / v1 = [e2 / (3 * ε0 * h)] / [e2 / (ε0 * h)] = 1/3
Therefore, v3 : v1 = 1 : 3
\( \text{M} \xrightarrow{\text{CH}_3\text{MgBr}} \text{N} + \text{CH}_4 \uparrow \xrightarrow{\text{H}^+} \text{CH}_3\text{COCH}_2\text{COCH}_3 \)
Identify the ion having 4f\(^6\) electronic configuration.