Step 1: Compute the gradient of \( f(x, y, z) \).
The gradient of a scalar function \( f(x, y, z) \) is given by:
\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k}.
\]
Given:
\[
f(x, y, z) = 2 \ln(xy) + \ln(yz) + 3 \ln(xz),
\]
we compute the partial derivatives of \( f \) with respect to \( x \), \( y \), and \( z \):
\[
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \big( 2 \ln(xy) + \ln(yz) + 3 \ln(xz) \big) = \frac{2}{x} + \frac{3}{x},
\]
\[
\frac{\partial f}{\partial x} = \frac{5}{x}.
\]
Similarly:
\[
\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \big( 2 \ln(xy) + \ln(yz) + 3 \ln(xz) \big) = \frac{2}{y} + \frac{1}{y},
\]
\[
\frac{\partial f}{\partial y} = \frac{3}{y}.
\]
And:
\[
\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \big( 2 \ln(xy) + \ln(yz) + 3 \ln(xz) \big) = \frac{1}{z} + \frac{3}{z},
\]
\[
\frac{\partial f}{\partial z} = \frac{4}{z}.
\]
Thus, the gradient is:
\[
\nabla f = \frac{5}{x} \hat{i} + \frac{3}{y} \hat{j} + \frac{4}{z} \hat{k}.
\]
Step 2: Evaluate \( \nabla f \) at \( (x, y, z) = (1, 1, 1) \).
Substituting \( x = 1, y = 1, z = 1 \):
\[
\nabla f = 5 \hat{i} + 3 \hat{j} + 4 \hat{k}.
\]
Step 3: Compute the unit vector in the direction of \( \mathbf{u} \).
The given vector \( \mathbf{u} = 2\hat{i} + \hat{j} + 2\hat{k} \).
The magnitude of \( \mathbf{u} \) is:
\[
|\mathbf{u}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3.
\]
The unit vector in the direction of \( \mathbf{u} \) is:
\[
\hat{\mathbf{u}} = \frac{\mathbf{u}}{|\mathbf{u}|} = \frac{1}{3} (2\hat{i} + \hat{j} + 2\hat{k}).
\]
Step 4: Compute the directional derivative.
The directional derivative is given by:
\[
\text{Directional Derivative} = \nabla f \cdot \hat{\mathbf{u}}.
\]
Substitute \( \nabla f = 5 \hat{i} + 3 \hat{j} + 4 \hat{k} \) and \( \hat{\mathbf{u}} = \frac{1}{3} (2\hat{i} + \hat{j} + 2\hat{k}) \):
\[
\nabla f \cdot \hat{\mathbf{u}} = \frac{1}{3} \big( (5)(2) + (3)(1) + (4)(2) \big).
\]
Simplify:
\[
\nabla f \cdot \hat{\mathbf{u}} = \frac{1}{3} \big( 10 + 3 + 8 \big) = \frac{1}{3} (21) = 7.
\]
Thus, the directional derivative is:
\[
\text{Directional Derivative} = 7.
\]